Two actions of calcium regulate the supply of releasable vesicles at the ribbon synapse of retinal bipolar cells.

نویسندگان

  • A Gomis
  • J Burrone
  • L Lagnado
چکیده

Ribbon synapses of sensory neurons are able to sustain high rates of exocytosis in response to maintained depolarization, but it is not known how this is achieved. Using the capacitance technique, we have found that Ca(2+) regulates the supply of releasable vesicles at the ribbon synapse of depolarizing bipolar cells from the retina of goldfish. Ca(2+) had two actions that could be differentiated by introduction of the Ca(2+) chelator EGTA; one action stimulated refilling of the rapidly releasable pool of vesicles from a reserve pool, and a second action stimulated recruitment of vesicles to the reserve pool. The capacity of the reserve pool was approximately 3500 vesicles, which is similar to the number that can attach to the ribbons. These results suggest that continuous exocytosis at ribbon synapses is maintained by the Ca(2+)-dependent translocation of vesicles from the cytoplasm, through the ribbon, to release sites on the plasma membrane.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synaptic depression and the kinetics of exocytosis in retinal bipolar cells.

The capacitance technique was used to investigate exocytosis at the ribbon synapse of depolarizing bipolar cells from the goldfish retina. When the Ca(2+) current was activated strongly, the rapidly releasable pool of vesicles (RRP) was released with a single rate-constant of approximately 300-500 sec(-1). However, when the Ca(2+) current was activated weakly by depolarization in the physiologi...

متن کامل

Continuous Vesicle Cycling in the Synaptic Terminal of Retinal Bipolar Cells

Endocytosis and exocytosis were investigated in the synaptic terminal of retinal bipolar cells by monitoring the uptake and loss of the fluorescent dye FM1-43. Depolarization in the presence of Ca2+ stimulated a continuous cycle of exocytosis and endocytosis that was approximately balanced at rates up to 3800 vesicles per s. Vesicles became available for exocytosis within 1 min of endocytosis, ...

متن کامل

A computational model of the ribbon synapse.

A model of the ribbon synapse was developed to replicate both pre- and postsynaptic functions of this glutamatergic juncture. The presynaptic portion of the model is rich in anatomical and physiological detail and includes multiple release sites for each ribbon based on anatomical studies of presynaptic terminals, presynaptic voltage at the terminal, the activation of voltage-gated calcium chan...

متن کامل

Vesicle pool size at the salamander cone ribbon synapse.

Cone light responses are transmitted to postsynaptic neurons by changes in the rate of synaptic vesicle release. Vesicle pool size at the cone synapse constrains the amount of release and can thus shape contrast detection. We measured the number of vesicles in the rapidly releasable and reserve pools at cone ribbon synapses by performing simultaneous whole cell recording from cones and horizont...

متن کامل

Endogenous Calcium Buffers Regulate Fast Exocytosis in the Synaptic Terminal of Retinal Bipolar Cells

Calcium-triggered exocytosis at the synapse is suppressed by addition of calcium chelators, but the effects of endogenous Ca(2+) buffers have not been tested. We find that 80% of Ca(2+) binding sites in the synaptic terminal of retinal bipolar cells were associated with mobile molecules that suppressed activation of Ca(2+)-sensitive K(+) channels with an efficiency equivalent to approximately 1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 19 15  شماره 

صفحات  -

تاریخ انتشار 1999